SNAP - SOUTHERN NORWAY AIRSPACE PROJECT
SNAP – Background / challenges in old airspace organization

1. Safety
2. Capacity constraints
3. Political drive to reduce charges
4. Environmental issues - noise/gas
5. Standardisation
6. Regulatory requirements
7. Interface to Oslo AoR
SNAP – Objectives

1. Increase safety level and reduce the number of incidents.
2. Increase capacity to meet expected demand up until the year 2030.
3. Reduce negative influence on environment.
4. Increase standardisation and efficiency in ANS provision.
5. Facilitate increased revenues and/or reduced route charges.
SNAP – Change elements

- Changed routes (SID/STAR and ATS routes)
 - New/changed SID/STAR
 - One-way segregated routes

- New/changed sector boundaries
 - Conflict areas within one sector
 - Balanced workload

- Changed work methodology
 - Sequencing by ACC
 - Crossing arrivals/departures in TMA
 - Less vectoring
 - Uniform work methodology at comparable units

- Technology
 - CNS
 - NATCON
SNAP schedule
Scope of work

- SID/STAR at local airports
- SID/STAR regional airports
- ATS route network
- Sectorisation
- New APP unit
- VHF communication
1. RWY independent TMA entry/exit points
2. Arrivals will be sequenced by ACC without AMAN support.
3. Single sequencing leg
4. PMS design adjusted to SNAP - allows 4 min on sequencing leg = 16NM.
5. SID climb above STAR before crossing
6. No «hard level constraints»
7. Planned routing: STAR start point direct to Merge Point
8. Procedure description - 16NM.
9. TMA Controller and Director concept of operations,
ENVA-Vectors without sequencing from ACC.

ENVA-PMS with ACC sequencing

RTS Validation Program:
• 2 hours of RTS traffic handled with and without the support of a PMS structure and ACC sequencing.
• Exactly the same traffic handled by the same controllers working in the same sectors.
SNAP PMS Standardisation

Identical PMS structures at 3 airports provides:
- Predictability
- Accuracy
- Standardisation

Potential gains for operators and service providers.
SNAP Fun Facts

1. Largest airspace project in Europe
2. 16 airports have implemented new SID/STAR system
3. 3 ACC locations and 4 APP units introduced to new airspace and new work methodology
4. 1 new APP unit established at Trondheim/Værnes
5. 350 persons completed operational training
6. 382 new maps produced and published
7. 250 procedures flight validated
8. New adaptation data on 3 different NATCON platforms
9. New NATCON software in Bodø AoR
10. 33 new VHF radios installed on 20 locations (mountain tops)
11. 441 Local ATS instructions/LoA’s produced and published (share point)
12. 22 safety analyses completed
13. 9 approvals received from NCAA

Facts after 24 hours operation:
ONLY 10 min average delay per flight vs 35 min forecasted!
Looking for support?

Avinor is ready to share our experience from implementing and operating Point Merge System!